An overview of the Amber biomolecular simulation package
نویسندگان
چکیده
Molecular dynamics (MD) allows the study of biological and chemical systems at the atomistic level on timescales from femtoseconds to milliseconds. It complements experiment while also offering a way to follow processes difficult to discern with experimental techniques. Numerous software packages exist for conducting MD simulations of which one of the widest used is termed Amber. Here, we outline the most recent developments, since version 9 was released in April 2006, of the Amber and AmberTools MD software packages, referred to here as simply the Amber package. The latest release represents six years of continued development, since version 9, by multiple research groups and the culmination of over 33 years of work beginning with the first version in 1979. The latest release of the Amber package, version 12 released in April 2012, includes a substantial number of important developments in both the scientific and computer science arenas. We present here a condensed vision of what Amber currently supports and where things are likely to head over the coming years. Figure 1 shows the performance in ns/day of the Amber package version 12 on a single-core AMD FX-8120 8-Core 3.6GHz CPU, the Cray XT5 system, and a single GPU GTX680. C © 2012 John Wiley & Sons, Ltd.
منابع مشابه
The Amber biomolecular simulation programs
We describe the development, current features, and some directions for future development of the Amber package of computer programs. This package evolved from a program that was constructed in the late 1970s to do Assisted Model Building with Energy Refinement, and now contains a group of programs embodying a number of powerful tools of modern computational chemistry, focused on molecular dynam...
متن کاملForce field validation for nucleic acid simulations: Comparing energies and dynamics of a DNA dodecamer
Important questions exist regarding the quality of force fields used in molecular dynamics (MD) simulations and their interoperable use with other available MD implementations. NAMD is one of the most efficient and scalable parallel molecular dynamics codes for large-scale biomolecular simulations in the open source domain. It is the aim of this article to analyze and compare the dynamics of a ...
متن کاملThe GROMOS software for biomolecular simulation: GROMOS05
We present the latest version of the Groningen Molecular Simulation program package, GROMOS05. It has been developed for the dynamical modelling of (bio)molecules using the methods of molecular dynamics, stochastic dynamics, and energy minimization. An overview of GROMOS05 is given, highlighting features not present in the last major release, GROMOS96. The organization of the program package is...
متن کاملAn N log N approximation based on the natural organization of biomolecules for speeding up the computation of long range interactions
Presented here is a method, the hierarchical charge partitioning (HCP) approximation, for speeding up computation of pairwise electrostatic interactions in biomolecular systems. The approximation is based on multiple levels of natural partitioning of biomolecular structures into a hierarchical set of its constituent structural components. The charge distribution in each component is systematica...
متن کاملComparison of multiple Amber force fields and development of improved protein backbone parameters.
The ff94 force field that is commonly associated with the Amber simulation package is one of the most widely used parameter sets for biomolecular simulation. After a decade of extensive use and testing, limitations in this force field, such as over-stabilization of alpha-helices, were reported by us and other researchers. This led to a number of attempts to improve these parameters, resulting i...
متن کامل